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we see that
AU =UWV,T,) —U(V,, Ty)

;
=— j . P.dv.

V

(51)
Thus for instance, if P, is given in terms of e,

AU = aye + 3a,e* +3a,.e* +iase®.  (52)

Eliminating U,(V, T,) between (47) and
(49), using (48) and noting that ¢(V,) =0,
the final expression for the Hugoniot is

P,,[l—%(%’—])]=Ps—17—/(AU+E,). (53)

7. EQUATION OF STATE OF MgO

The elastic moduli of single-crystal MgO
have been measured as a function of pressure
and temperature by Spetzler[18]. The bulk
modulus and its first pressure and temperature
derivatives can be determined from such
measurements. The parameters determined by
Spetzler[18] are listed in Table 1, along with

Table 1. Zero pressure elastic and
thermodynamic data of magnesium
oxide at 300°K

po(g/cm?) [20] 3-584
Kor (Mb)[18] 1-605
K}, [18] 3-89
(0K o2/8T ) p (Kb/°K)[18] —0-272
o, (CK)1[20] 3-15% 107°
Cy (erg/g°K)[21] 9-25 % 10°

the density, thermal expansion coefficient and
specific heat of MgO, from the indicated
sources.

These parameters were used in (34-41) to
determine the parameters of the equations of
state (32) and (33), in terms of m and E,
respectively. Since the second pressure
derivative of the bulk modulus, K”, is not
given, only the third-order versions of these
equations are determined in this way.

Using the 300°K isotherms given by (32)
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and (33) the corresponding isentropes and
Hugoniots were calculated according to the
previous sections.

The fact that both the finite strain and the
thermal parts of the equation of state are
determined, so that Hugoniots can be cal-
culated with reasonable accuracy, means,
in effect, that extrapolations of the lower
pressure data (specifically, the ultrasonic
data) can be tested against Hugoniot data.

Carter et al.[19] have given data for a series
of MgO Hugoniots, corresponding to different
initial densities of the MgO samples. The
lower initial density Hugoniots obtained by
them are offset to higher pressures, and hence
higher temperatures, than the single-crystal
Hugoniot at the same density. These data
thus provide a test of both the finite strain
and the thermal parts of the present theory.

First, consider the finite strain part of the
theory. In Fig. 1 are shown the single-crystal
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Fig. 1. Third- and fourth-order single-crystal MgO

Hugoniots calculated in terms of E (solid) and n (dashed),
compared with Hugoniot data of Carter ef al.[19].
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Hugoniot data of Carter et al.[19], along with
the corresponding third-order Hugoniots
calculated in terms of both the n and E strain
measures. It can be seen that the ‘E’ Hugoniot
is considerably closer to the data than the
‘n’ Hugoniot. This is an example of the
empirical superiority of the ‘E’ equations
which was, of course, pointed out by Birch
[9, 10], and is the reason for the subsequent
popularity of the ‘Birch-Murnaghan’ equation
[11].

Also shown in Fig. 1 are fourth-order n and
E Hugoniots in which K, was determined by
requiring a least-squares fit of the calculated
curve to the data. The resulting values of
(K,K;) are given in Table 2. Clearly, the

Table 2. Values of KKy of
MgO determined from
Hugoniot data

Strain measure KoK
n 10-5
E -1

fourth-order n and E Hugoniots fit equally
well within the scatter of the data.

Comments on two important points can be
made here. Firstly, it is clearly desirable to use
an equation of state which involves the least
number of disposable parameters, while still
giving an acceptable representation of data.
The greater success of the third-order E
equation indicates faster convergence of the
expansion in terms of E than that in terms of
m. While there is no guarantee that this rapid
convergence will continue to higher orders,
it is certainly more reasonable to assume this
about the E expansion than the n expansion,
and E therefore appears to be a more useful
strain measure than 7).

The second point is that the value of KK
obtained depends on the equation used to fit
the data (Table 2). It is, of course, a general
property of truncated series expansions that
the higher-order coefficients are less well
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determined empirically, but it is one that
seems to have received little notice in the
context of finite strain expansions.

The thermal part of the equation of state
will now be discussed. The volume depend-
ence of y resulting from equations (24, 27, 28,
43) is shown in Fig. 2. For the range of com-
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Fig. 2. Griineisen parameter, vy, of MgO calculated from
equations (24), (27) and (28), in terms of e, n and E,
respectively, and from (43) given by Thomsen[1].

pressions, shown, the differences are not
large. At larger compressions, y given by (43)
will be the first to become negative.

As mentioned previously, the Hugoniot
data for different initial densities provide a
test of the thermal part of the theory. The
fourth-order E equations, with K} evaluated
from the single-crystal Hugoniot data (Table
2), were used to calculate the corresponding
family of Hugoniots. These are compared
with the data in Fig. 3. There is considerable
scatter in the data but the separation of the
various Hugoniots is quite apparent. The
calculated Hugoniots reproduce this separa-
tion to within the scatter of the data. The
fourth-order 7 equations would have yielded
slightly smaller separations, as shown by the
extrapolations of y in Fig. 2, and would thus
appear to be slightly less successful in
explaining the data, but the evidence is
marginal.

In conclusion, the finite strain extrapola-
tions of the Mie-Griineisen equation devel-




